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In this paper, we use the method of homoclinic orbits to study the existence and stability
of discrete breathers, i.e., spatially localized and time-periodic oscillations of a class of
one-dimensional (1D) nonlinear lattices. The localization can be at one or several sites
and the 1D lattices we investigate here have linear interaction between nearest neighbors
and a quartic on-site potential M):%Kuzr%u“, where the {) sign corresponds to
“hard spring” and (—) to “soft spring” interactions. These localized oscillations—when
they are stable under small perturbations—are very important for physical systems be-
cause they seriously affect the energy transport properties of the lattice. Discrete breath-
ers have recently been created and observed in many experiments, as, e.g., in the Joseph-
son junction arrays, optical waveguides, and low-dimensional surfaces. After showing
how to construct them, we use Floquet theory to analyze their linear (local) stability,
along certain curves in parameter space ), wherea is the coupling constant and

the frequency of the breather. We then apply the Smaller Alignment Index method (SALI)
to investigate more globally their stability properties in phase space. Comparing our
results for the+ cases of Vu), we find that the regions of existence and stability of
breathers of the “hard spring” lattice are considerably larger than those of the “soft

GR-11527, Athens, Greece spring” system. This is mainly due to the fact that the conditions for resonances between

breathers and linear modes are much less restrictive in the former than the latter case.
Furthermore, the bifurcation properties are quite different in the two cases: For example,
the phenomenon of complex instability, observed only for the “soft spring” system, desta-
bilizes breathers without giving rise to new ones, while the system with “hard springs”
exhibits curves in parameter space along which the number of monodromy matrix eigen-
values on the unit circle is constant and hence breather solutions preserve their stability
character.[DOI: 10.1115/1.1804997

tions (see, e.g.[2-5]). We believe, therefore, that it is timely for
the engineering community to become more actively involved in
the investigation of these interesting solutions, with the ultimate
goal of performing experiments to test the theoretical predictions.
Unt+V'(up)=a(upstup_1—2u,), —»<n<+o (1) Itis the purpose of this paper to help make some progress in this
direction.

There exist several methods to compute numerically exact
breather solutions for systefi) with on site potential2). With

the term “numerically exact” breather, we mean a solution that is

V(u)=%Kuzt%u4 (2) time-periodic and spatially localized for a lattice Nf particles

where K>0 is a fixed parameter. Dots indicate time derivatives?lnd retains its shape aéis arbitrarily increased. For example,

and primes differentiation with respect to the argument. Thegg_e can usel the c:nethod_of cor(;tinuation ks]tartigg frhomdthg _Iimit
equations describe the dynamics of an infinitely long chain 60 @S explained, e.g., ifi] and[4]. On the other hand, it is

oscillators, each linearly coupled to its nearest neighbors and &80 Possible to apply relaxation methods based on the fact that, if
periencing a “substrate” potentiaV. The (+) sign in Eq.(2) a breather solution exists and is stable, it should attract a region of

implies that the particles are tied to the substrate by “hard springghase space around it, assuming that some dissipative process is
forces, while the(—) sign refers to the “soft spring” case. present to eliminate any excess enef§y-8].

Since the seminal paper of MacKay and Aubry in 1924 in In the present paper, we prefer to use the more recently devel-
which the existence of localized, time periodic solutidtie so- oped method of homoclinic orbits of invertible maps, as described
called discrete breathepsof systems like(1) was rigorously es- jn [9] and implemented ii10—-12, which turns out to be very
tablished, there has been a wealth of results in the physics venient, as it can be applied independently of the value of the
mathematics literature, concerning the properties of these Sotl,l(')'upling parameter. This method operates in Fourier space and
offers excellent approximations for breathers, which can be made
0‘nnumerically exact” by using the convergence of Newton
schemes to construct them to arbitrary accuracy. Furthermore, it

1 Introduction

We consider a one-dimension@lD) lattice described by the
equations of motion:

whereu,(t) is the displacement of the particlerah lattice sitea
the coupling parameter, ant{u) an on-site potential given by the
form
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provides a systematic way by which all types of breathers pos-In this paper, we shall concentrate on the soft-spring potential

sessing an arbitrary number of “local extremé&he so-called

multibreathers can be constructed. V(u)=3Ku?—3u* (5)
The paper is organized as follows: In Section 2, we describe

briefly the method of homoclinic orbits of maps in Fourier spacépserting Eq.(3) in the equations of motiofil) and equating co-

used to study the existence of breather solutions of our “haréfficients of expikwt) for everyk, we obtain the following alge-

spring” and soft-spring 1D lattices. We explain the notion of resd2raic system for thé\,(k):

nances between breathers and the “phonon” speciithin linear

mode frequencies of the latticand analyze our maps to show An+1(K) +An_1(k)=C(k)An(k)

that the parameter regions for the existence of breathers in the

hard-spring system are much larger than those of the soft-spring — EE DD ALk An(Ko) An(ks)
case. Our analytical predictions are fully confirmed by numerical @ g kg
experiments, which are presented in Section 3. Incidentally, unlike (6)

the discrete case, phonon resonances are very difficult to avoid in
continuous systems described by partial differential equations. Rgkerek, + k,+k;=k and
an analysis of localized “waves” in such systems, §&8].
Subsequently, in Section 4, we examine the local and global
stability properties of some of our discrete breathers. Our local C(k):(2+
analysis is based on Floquet theory and follows the behavior of

the eigenvalues of the monodromy matrix of these periodic solgthe recurrence relatio(6) is an infinite-dimensional mapping of
tions, as a function of the coupling parameterand their fre- the Fourier coefficient\,(k) with lattice site index as iteration
quency w. If all these eigenvalues lie on the unit circle, thgarameter. Spatial localization requires that the Fourier amplitudes
breather is said to bg Ioc'allhhnearly) stable, under infinitesimal i, the recurrence relatiof6) satisfyA,(k)—0 as||n|—c. Hence
perturbations, otherwise it is locally unstable. a discrete(multi-) breather is a homoclinic orbit in the space of
_Thus, by varying the coupling parameter-0, we study the Fouyrier coefficients, i.e., a doubly infinite sequence of points be-
bifurcations(or stability transitionsof breather solutions and dis- ainning at 0 forn— —c and ending at 0 fon—c. Of course, in

cover some important differences in the dynamics of the hargny numerical method the index spacek) has to be restricted to
spring and soft-spring lattice. For example, the hard-spring breaffinite subspace.

ers preserve their stability over much longer parameter intervalsgojlowing the above arguments, if the Fourier series of @j.
and upon blfurca.tlor’l’s inherit their stability to new breathergonyerges, théA, (k)| diminish rapidly with increasingk|, then
while the “soft-spring” breathers very often undergo complex inyt js sufficient to consider only a small number of harmonics of
stability transitions, at which no new periodic solutions arise. Wegyrier series in Eqd), sayM, for all n lattice sites (o <n<
then use the SALI method4-1§ to study solutions more “glo- 1) je. k=1,2,... M. Under these conditions, E¢) repre-
bally” in the vicinity of a breather in theN-dimensional phase sents a M-dimensional map and spatially localized time-periodic

space. Thus, we demonstrate the presence of regular motigyitions may be expected to exist in the neighborhood of the
around stable breathers, while evidence of chaotic behaviortigial solution (A,(k)=0, for all n, k), provided this solution is

observed at sufficient distance from them in the space of initig{nerpolic, i.e., represents a saddle point of the map.

conditions. _ _ ~ Thus, we first need to determine conditions under which the
Finally, in Section 5, we p.resent our conclusions together wiiyial fixed point of the M-dimensional map is a saddle and

some additional results, which show that the energy versus figamine the dimensionality of its stable and unstable manifolds.

quency plots for the two systems exhibit quite different charactefy this end, we observe that a linearization of E8). near the

istics. In the soft-spring lattice, the energy per particle attains@int[A,(k)=0, for all n, k] yields M uncoupled 2D linear maps
maximum at some frequency value and then decreases towafgi eigenvalues

zero, while for the hard-spring breathers the energy grows mono-

K —k2w?
—) (7)

a

tonically with increasing frequency. It would thus be very inter- C(k) = /C(k)>—4

esting to devise actual experiments by which one could test the N Ak)= B — (8)
validity of these results in realistic systems of nonlinear oscilla-

tors.

for every k. Consequently, the fixed poi©,0) of the map is
hyperbolic (saddle point with an M-dimensional stable and an

2 The Method of Homoclinic Orbits M-dimensional unstable manifold, if
Since a discrete breather solution of Ed) is time-periodic ~
With,_say, p_eriodl' and frequencyn=27/T, it can be expanded in C]>2, ke[l ©)
Fourier series The inequality in Eq.(9), using Eq.(7), implies that we must
o require
t)= Ak ikwt 3

()= 2 Anexpiikat) ®) W K2<K  or wk?>K+da (10)

with coefficients Thus, breathers exist if the fundamental frequeagyobtained
An(K) =A% (k) 4) from Eq. (7), with k=1

Since the oscillations are expected to have zero mean, by virtue of w=\JK—a(C(1)—2) (11)

the form of the potentia(2), we setA,(0)=0. Furthermore, all

particles oscillate in phase, hence we may search for soluticssd all its harmonics have values outside the rang&K 4«)

with initial velocities zero, thus taking all tha,(k) to be real specified by Eq(10). This range, in fact, represents the spectrum
numbers. Finally, due to the symmetry of the on site potef@jial of linear modes of the particleghe so-calledphonon$ and is

only the modes with odd indek (i.e., k=1,3,5...) arenon- often called thgoropagation zondecause it is within this range of
zero. The existence of such periodic solutions for hard-spring syeequencies that small disturbances can propagate along the lat-
tems[with + in Eq. (2)] has already been extensively demontice. If wk were to lie in this range for some this would imply
strated in the recent literatuf8—12). the reduction of dimensions of the unstable manifold. Thus, the
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points (and breather solutiopsvould not exist with equivalent

properties as— *+ o, 1
Let us consider now the simplest possible approximation, fi o

which the Fourier serie) is represented by a single mode only

ie., /
0.5

Ugo)(t)zzAn(l)COSwt, —o<nN< % (12)

origin could not be a saddle fixed point of m@) and homoclinic \

Substituting Eq(12) into Eqg. (1), using Eq.(2), and scaling also

the Fourier coefficients by / //

An(1)=aA, (13) An 0~ \
we obtain, finally,
Ani1+A,_1—C(1)A,=—3A3 (14) v
-0.5
where
K— w? \
C(1)=|2+ (15)
o
. . -1
Thus, instead of studying theM2-D map (6), we solve the 2D \ / / — |
map (14) to obtain zeroth order approximatiord2) of the
breather solutions of the 1D lattiod) with the quartic on-site -1 -0.5 0 0.5 1
potential(2). Clearly, the fixed poin€0,0) of the 2D map(14) will Ay

be hyperbolic, with a 1D stable and a 1D unstable manifold, It

C(1)>2 or C(1)<—2. We only treat here the cas®(1)>2, Fig. 1 Part of the homoclinic tangle around the origin of the

because fo€(1)< — 2 the invariant manifolds of the saddle pointmap of Eq. (16) at C(1)=3. The stable and unstable manifolds

at (0,0) do not intersect and breathers are not expected to existre the curves emerging out of the  (0,0) saddle point and are
Using (15), the inequalityC(1)>2 means that the value of theindicated by the incoming and outgoing arrows, respectively.

frequencyw is below the phonon bantpropagation zone i.e., Some point_s of two hqmoclinic orbits at thgir intersections

w?<K. Thus, to have breather solutions, one must appropriat(géfripgggE%;Odg’é’s rdé‘;fggirt‘itv g{fﬁng;;%“\}i'ggsv ory ;CiLeraStQOW”

restr_lct the system S parameters so that the frequencies of all timates for the oscillation amplitudes A, of the particles of

monics, kw, lie outside the phonon ban&(K+4a). By cOm- 1o jattice. nez.

parison, the values of the frequencigsndamental and harmon- '

ics) of the hard-spring system are all above the phonon band, once

©?>K+4a is satisfied. Consequently, the parameter range fgfe packward directionn——z). The plot of our numerical re-
the existence of breathers of the hard-spring lattice is much larggfits shows that the manifolds extend to large distances from ori-

than the corresponding one for the soft-spring poteri#al gin, but also return to form homoclinic points, at the intersections
of the stable and unstable manifolgee Fig. 1 The normalized
3 Numerical Computation of Breathers unstable eigenvector of the Jacobian of map #4) is given by
Let us note now thatl4) is an iterative map. This implies that . (v, 1 p C(1)+ \/C(1)2—4
the future state is obtained as the image of the current state and U:(Uz) = \/2—_+1(1) e 17)
lies in the same 2D space. Starting from an initial poxgt p
=(Ag,By) one obtains a unique orbit, denoted Py} with n  and spans the linear unstable eigenspace of the origin. The nor-
=0. The inverse of the mafi4) is easily derived malized stable eigenvector of the Jacobian of Ef@).is given by
An_ Bn-%—l (16) §: ( Sl) _ 1 1 (]_8)
Bn=—An1+C(1)Byy1— 3B,y 2/ JpP+1le

and, hence, the iteration indexcan be any integem(e Z) and and spans the linear stable eigenspace of the origin. It is well

(14) is called an invertible map. An orbit is also referred as Bnown (see, e.g.[13]) that the stable and unstable manifolds of a

solution of the map, since it solves the system of @4). Orbits hyperbolic fixed point are tangent to the spaces spanned by the

considered in this paper are orbits connecting the saddle posthble and unstable eigenvectors of the Jacobian matrix at the

(0,00 of our map to itself and are called homoclinic orbits. Aixed point, respectively. It also holds that the Jacobian of the

homoclinic orbit consists by definition of statgs, which lie at inverse map is the inverse of the Jacobian matrix of the map.

the intersection of unstable manifold and stable manifold of the To compute the homoclinic solutions of Eq$4) and(16), we

saddle fixed point. If there is one state for which this holds, theepply the following numerical method that uses approximations at

exist infinitely many of them, thus giving rise to an infinity ofthe boundaries. We chood¢(—N<n<N) for 2N+1 particles

homoclinic orbits. The emerging picture is that @homoclinic on the chain and then compute the zeros of an algebraic system.

tangle[19]. More specifically, due to the topological equivalence of the orbits
An example of such a structure is shown in Fig. 1, where waf the linear system and the complete system we setxthe

plot in theA,. 1, A, plane the stable and unstable manifolds of (A_y,;1,A_\) State on the linear unstable eigenspace of the

the saddle point &0,0) of 2D map(14) with C(1)=3. Beginning origin, i.e., A_y,1=&yv1, A_y=eyv,, Wheree (|¢|<1) is a

from states close to the origin, which lie on the unstable eigesealar parametety is an unknown real number and , are the

vector of the Jacobian map of E¢l4), and applying the map components of the normalized unstable eigenvdstee Eq(17)].

repeatedly, we follow the unstable manifold in the forward direc- Using the same arguments, we setxhe (Ay,Ay_1) State on

tion (n—). We then begin from states close to origin, which lighe linear stable eigenspace of the origin, i&y=c8S;, An_1

on the unstable eigenvector of the Jacobian of the inverse mag Bs,, whereg is a unknown real number argd , are the com-

(16), and apply the inverse map to follow the stable manifold iponents of the normalized stable eigenvedisee Eq.(18)]. Be-
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ginning then from stat& _ and applying forwardE)N—1 times ®
the recurrence relatiofi4) we obtain arAS(y) which depends on 1.5 (a)
v. Repeating the procedure in the backward direct®)nwe start
from a statexy . After N—1 times we compute thag(ﬁ), which 1.25
depends ong. Since we seek homoclinic orbits, the following us(0) 1
relations must be satisfied at the middle of the lattice:
AS(7)=AS(B) (19) 075
and 0.5
AZ(B)=C(L)AG(7) = 3(A5())*~ AT 1(7) (20) 0.25 o o
Thus, the search for homoclinic solutions is reduced to finding N Y Y YYYYYI D Y Y Y Y Y Y Y X!
statex_y, of the unstable manifold of the origin and a stafeof -10 -5 0 5 10
the stable manifold of the origin, determined by the numbes, n
for which Egs.(19) and (20) are satisfied. There exist several
methods for finding zeros of a system of equations (&8, (22) 0.06 (b) [ J
(e.g., Newton methods, steepest descent methods, lett.they ) [
are not always the most appropriate to employ due to their not_ g g5 ®
rious difficulties in distinguishing between nearby zeros. l‘s ®
Here, we shall use the method of the topological ded2€e- < 0.04 e
22], which gives the exact number of zeros in a restricted intervega ° ®
It has already been successfully employed for a similar purpose 3 0. 03 ®
[10-12, and is ideal for finding zeros when combined with < ° ®
bisection methodi.e., iteratively dividing the search space in 0.02 ° ®
smaller sections containing zeros until each section contains ot ° [ )
a single zero and the size of the section is below an accura 0.01 °®
threshold. Finally, to compute the initial positions,(0) of the o @ L
particles for a(multi-)breather solution, we use our homoclinic 0.5 0.05 0.075 0.1 0.125 0.15 0.175
orbit as a first estimate of the initial positions thg(1)’s [see Eq. a

(13)], and insert this set of values as a seed in a Newton-type
algorithm (see the Appendixto find numerically exact breather Fig.
solutions, like the one shown here in FigaR

We have also verified, by computing the Fourier amplitudes @itio

2 (a) Initial conditions of a simple “soft spring” breather

for K=2, C(1)=8 for 21 particles (N=10). (b) Variation of the

of coefficients Aq(3)/Ay(1) in the Fourier expansion of

the actual breather solutions, that the contribution of higher-ordeg(t) (position of central particle ) versus the coupling param-

terms grows as the coupling parameterenergy of a breather eter
solution is increased. In particular, in Figlb2 we show how the
magnitude ofAy(3) increases compared with thatAf(1). Still,

this figure suggests that the higher harmonisg(k), k>1, are

a, for the breather in (a).

much smaller thar\,(1) and this justifies our use of the 2D mapof Eq. (1) with the potential(5) and studied their linear stability

(14) and explains the accuracy of the approximatitg).

4 Local and Global Stability of Discrete Breathers

For a given solutionu,(t)} of Egs. (1) and (2) of the soft-
spring system, the linearized equations of motion fulfilled by
small perturbationge, (t)} of this solution, are

(1)

A solution{u,(t)} is considered stable when, for any initial con-
ditions, the linear perturbatiod®,(t)} do not grow exponentially

in time. When{u,(t)} is time-periodic with periodl, then Eq.
(21) defines a linear symplectic map between the initial perturba-
tion att=0 and the perturbation at time=T, expressed by a
matrix F({u,}), known as the monodromy matrix:

{en(T)} {en(0)}
(e} = FdUnb e (0))

The time-periodic solutioqu,(t)} is called linearly stable when

all the eigenvalues of this monodromy matfix{u,}) lie on the

unit circle. The monodromy matrik ({u,,}) always has a pair of
degenerate eigenvalues equal to one, corresponding to perturba-
tions in the direction of motion which grow linearly in When
some eigenvalue pairs “split off” the unit circle, then the corre-

e,+Ke,—3ui(t)e,—a(e, 1 +e,_1—2€,)=0

(22)

characteristics. We thus obtained the following results:

In most cases, as the coupling parametéicreases, breather
solutions for soft-spring systems undergo a complex instabil-
ity transition, i.e., a complex conjugate pair of their eigenval-
ues achieves magnitudes larger than one by splitting off the
unit circle in two complex conjugate pairsee Fig. &)]. Itis
important to note that, unlike other bifurcation typéike
pitchfork, period-doubling, etg. this instability transition is

not associated with the simultaneous appearance of other
(stable periodic solutiong23,24].

* Unlike the hard-spring case, when we follow curves in the

parametric space o(,K,w), described by the function
breather solutions for soft-spring systems do not preserve the
number of eigenvalues of the monodromy matrix with abso-
lute values different from one. In Fig. 3 we depict the distri-
bution of eigenvalues of the monodromy matrix for a soft-
spring breather solution for various values of coupling
parameter, keeping constant the values f6{1) and forK

[see Eq(15)].

K— w?

G(a,K,w)=—(2+ )=const. (23)

sponding perturbations grow exponentially in time and the By comparison, the breather solutions of systémsvith quar-
breather is called linearly unstablgor a discussion of all these tic hard-spring potential do not appear to exhibit complex insta-
concepts concerning the linear stability of discrete breathers damkty transitions, as they are always found to become unstable by
[5D. pairs of eigenvalues splitting off the unit circle &tlL on the real
Using the method of homoclinic orbits described in the abowxis. Furthermore, they do possess curves in parameter space
sections, we have constructed a large number of breather solutiéasK, ), described approximately by Ed23), along which
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(b)

| © @
0.5 0.5
0 0
-0.5 -0.5
-1 -1
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Fig. 3 For the “soft spring” breather shown in (a), with 21 particles and C(1)=8, K=2, we display in the complex plane how
the distribution of the eigenvalues of the monodromy matrix changes as the coupling parameter ais increased: (b) @=0.015,
(c) @=0.05, and (d) a=0.1. Note the occurrence of complex instability at «=0.05.

breather solutions do not change their stability preserving tla@curacy of the computer (16f), which means that the chaotic
number of eigenvalues of monodromy matrix with absolute valuegture of the orbit is established beyond any doubt and no further
different from ong/12,13. computations are needed.

A more “global” investigation of the stability of discrete This method can be briefly described as follows: Consider, in
breathers can be performed using the method of the Smalier m-dimensional Euclidian space, a nonlinear niBpand the
Alignment Index (SALI) to discriminate between ordered andnitial condition of an orbit defined by a poif®(0). Theevolu-
chaotic motion in a very efficient way. This method was introtion of this orbit is given by iterating
duced in[14], where it was applied successfully in 2D, 4D, and
6D symplectic maps. More importantly, however, it distinguishes P(N*+1)=T(P(N*)), N*=0,1,2... (24)
order from chaos also in Hamiltonian systems, as showid %

18], where it was applied to systems with two and three degreesiaf o case, Eq(24) represents the numerical integration of Eq.

freedom. * ; ; ; ;
“The man advanage of tre SALI s that t ha completely o S0 e e S s e Amenion of e prase
erent behavior for ordered and chaotic orbits, which allows us . | . *Y .
decide the nature of the orbit faster than other traditional methogfns of motion of Eq/(1) about the orbiP(N*) yields the linear
. - dngent map
such as, e.g., the computation of Lyapunov characteristic expo-
nents[25]. In particular, the SALI fluctuates around nonzero val- o7
ues for ordered motion, while it goes abruptly to zero for chaotic W(N* +1):( )W(N*) (25)

orbits. In the latter case, the SALI can also reach the limit of the IP(N*)
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describing the evolution of an initial deviation vectw(0) from o ey

the orbit. In order to compute the SALI we follow simultaneously @
the evolution ofP(N*) and two initially different deviation vec-
tors w.(0), w,(0). In every iteration the deviation vectors are
normalized, keeping their norm equal to 1, while the norm of thel_
sum (antiparallel alignment index, ALI) and their difference ':1 -4
(parallel alignment index, ALI) are also computed. Then the X
SALlI is defined as the minimum of the following two quantities 5 -6

(N*)  w(N%) | | wa(N¥) = ©
. Wy W» Wy
SALI(N*)=min + , -8
(N [ TN TN T (NP

Wo(N* -10

o wy( *) ] (26)

[[wo(N*)| 1.75 2 2.25 2.5  2.75 3 3.25 3.5

with [|-|| denoting the euclidean norm. log N°

In the case of chaotic orbits the two deviation vectors will even- . ]
tually be aligned with the most unstable direct{d], becoming Fig- 4 The log-log evolution of SALI with respect to the num-
equal (ALL_=0) or opposite (ALL=0), which means that the ber N* of iterations for the stable breather solution of Fig. 2 (a)
SALI becomes zero. The way the two vectors align and, consgith soft-spring potential containing 21 particles at C(1)=8,
GUenty he wey The SALI 1ehds (0 613 fo chaci oot wel L5215 K=2 (e (o) for e same ot v o
studied in detail i 18]. In particular it was found that the rate aty o [curve (8)].
which the SALI tends to zero in the case of chaotic orbits is
related to the difference of the two largest Lyapunov characteristic
exponentsry, o, as SALexd —(o;—oy)t] (with t denoting the . ) )
time). Iattlces. The;e are the sp-called discrete breathers, representing

In the case of ordered orbits on the other hand, the motion!fcalized periodic oscillations, where only a small number of par-
quasiperiodic and takes place on a torus, as if the system wlfees at the center of the lattice participate appreciably in the
integrable. Thus, any pair of arbitrary deviation vectors tends fgotion, while the amplitudes of all others exponentially decay
the tangent space of the torus and because there is no reason respect to their distance from the center. Discrete breathers
they should become aligned, in general, they oscillate about thgVe recently been created and observed in many experiments, as,
different directions and the SALI fluctuates around some non-zefdd:» in the Josephson junction arrg@$,27, optical waveguides
value. In[17] the behavior of the SALI for ordered orbits was.28l: and low-dimensional surfacg®9]. We have considered
studied and explained, in detail, in the case of a completely intk=dimensional lattices, whose particles are linearly coupled to
grable 2D Hamiltonian system. their nearest neighbors, but also “tied” to a nonlinear substrate

In the present paper we have applied the SALI method to ﬂrgptentl_al of the _soft-spnng type. Sln_ce similar _studles ha_ve been
out how persistent is the ordered behavior around stable breatHgf€nsively carried out for hard-spring potentials, our aim here
in the hard- and soft-spring potentials. Of course, since the n{f&s to compare breather dynamics in these cases and identify any
merically exact breathers correspond to periodic orbits in a mdihysically important differences that may exist. . _
tidimensional phase space, they can be perturbed by changir}l[q Qur maln'results can be summarized as .follov.vs. Varylng the
number of different variables. In order to get a rough idea of tHgtice coupling paramete#>0, we have studied bifurcations of
“size” of the phase space region of ordered behavior around ygeveral different breather solutions and have found that the hard-

stable breather, we have chosen to perturb only the initial positiSR'iNg breathers preserve their stability over much longer param-
of the central particlei, . eter intervals and upon bifurcations inherit their stability to new

Thus, starting from the stable periodic orbit and changigige breathers. The soft-sprlr_]g breath_e_rs on the o_ther hand, very of_ten
compute for a sample of orbits the SALI using as initial deviatioHNdergo complex instability transitions, at which no new periodic
vectorsw,(0)=(1,0,...0),w,(0)=(0,1,0...,0). The SALI of
ordered orbits remains always different from zero exhibiting some
small fluctuations. This behavior is shown in the log-log plots 0~
Fig. 4 for the soft-spring potential and Fig. 5 for the hard-sprin (@)
case, where the SALI of a stable periodic orbit is plotted as fun
tion of the number of iterationsl* [curves(a) in both figures.

In the soft-spring case, the first chaotic orbit was found for
perturbatiomAuy=0.2207 and the evolution of the corresponding
SALl is plotted in Fig. 4 as curvéb). We see that after an initial
transient time interval the SALI decreases abruptly reaching ve
small values, 10'° afterN* ~ 1500 iterations, which is the typical
behavior of the SALI for chaotic motion. -8

On the other hand, in the hard-spring case it is much harder
destabilize the stable periodic orbit, as we need a consideral -10
higher perturbatiom\uy to have chaotic motion. In particular we
have to perturb the position of the central particleXy,= 1.3 to
get a chaotic orbit, the SALI of which is plotted in Fig. 5 as curve
(b). Again we have an abrupt fall of the SALI to very small values
reaching 10'° after N* ~9500 iterations.

1)

-4

-6 F

(b)

log(SAL

2.25 2.5 2.75 3 3.25 3.5 3.75 4

log N

Fig. 5 The log-log evolution of the SALI with respect to the

number N* of iterations for a stable breather, like the one in

5 Conclusions Fig. 2(a), with hard-spring potential containing 21 particles at
C(1)=8, a=0.15275, K=2 [curve (a)] and for the orbit with a

In this paper, we have studied the existence and stability ofpgrturbation Au,=1.3 in the initial position of the central par-

physically interesting class of solutions, occurring in nonlineaicle [curve (b)].
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0.05 + a=(2—w?)/6 andw?<2 for the soft-spring lattice
(a) « a=(w?—2)/10 andw?>2 for the hard-spring lattice.
$ 0.04 Inserting these expressions feiin (27), it is now easy to explain
b= the main features of the graphs in Fig. 6. For example, in K. 6
& 0.03 the energy starts from a non-zero value and approaches zero as
> tends tov2, while in Fig. 6b) w starts fromv2 where the energy
2 5 02 is zero.
2 Furthermore, using the above formulas to express the eitergy
w in Eq. (27) as a function ofv? it is easy to show that this function
0.01 has a maximum in the case of the soft-spring lattice, while it
grows monotonically for the hard-spring system.
0 In conclusion, therefore, we believe that our study has revealed
0 0.2 0.4 0.6 0.8 1 1.2 1.4 gomeimportant differences in the dynamics of 1D lattices of non-
w linear oscillators with linear coupling among nearest neighbors

and soft-spring versus hard-spring on-site potentials. These prop-
erties concern the properties of localized periodic oscillations, or
0.6 (b) discrete breathers, which are currently under study in many physi-
cal systems. The fact that these structures are often found to be
stable under small perturbations suggests that they may indeed be
observable in experimental situations. It would thus be highly
desirable to construct such oscillator systems in the laboratory, in
one and two spatial dimensions and test the validity of the theo-
retical analysis and the simulations carried out in this paper.

Energy / Particle
o
w
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Fig. 6 (a) Variation of energy per patrticle versus frequency o,

Appendix: A Newton Algorithm for the Calculation of

solutions arise. We have also used the SALI method to examif®eather Solutions of Eq. (1)
the presence of ordered or chaotic motion more “globally” in the ) o ]
vicinity of a breather in its multidimensional phase space. Thus, In order to compute localized oscillations of periddof the
we have observed that regions of regular motion around-staigamical system described by E@), with initial conditions
breathers are considerably larger and evidence of chaotic behavié(0)}#{0}, {un(0)}={0}, we define the following vector
is observed significantly further from them in the hard-spring lagguation:
tice, in comparison with similar results for the soft-spring system. {un(T)} {u (0} -

In closing, we would like to point out one more important dif- ({Un(T)}) —( ’?0} )=P({un(0)}) (A1)
ference between these two kinds of lattices, regarding the varia- n
tion of the energy per particle of a breather with the frequency efhere the{u,(t)} represent the positions of tiparticles of the
oscillation w. In Fig. 6@a), we depict this behavior for the soft- system andu,(t)} their velocities at time. P is a 2NX 1 vector
spring breather of Fig.(2) and in Fig. Gb) for a similar breather finction of the initial positiongu,(0)}.
with a hard-spring potential. In the case of the soft-spring system,Since we search for time-periodic solution with zero initial ve-
the energy per particle exhibits a clear maximum at a frequengtities, we need to calculate tiécorrections{e,} of the initial

below the propagation zor{&ig. 6a)], while the energy of the positions, in such a way that
hard spring is seen to grow monotonically with increasing-ig.

6(b)]. _ _ P({un(0)} +{en})=0 (A2)
_ This effect is due to the different form of the energy as a funge,,4qing(A2) around the known quantitigsi,(0)}, we obtain
tion of the coupling constant in the two cases. Using our snmplethe following equation:

(but very accurateapproximation(12) with (13), we can express - ’ -
this dependence in the following forfsee the potential2)]: P({u,(0)})+aP({u,(0)})({e.)=0 (A3)

N N1 N wheredP({u,(0)}) is a 2NX N matrix with elements
e- L a(zKZ A2 +a2(22 (Ani1—A))?=4>, A (@
N n=1 n=1 n=1 - &Ui(T) - ﬁUi(T)
27) 0P({Un(0)})i,i=(9ui(o)—1, 0P({Un(0)})i,j:m
(Ad)

The factor ofa? in the above function is positive for the hard-
spring lattice, while it is negative for the soft-spring system. Nowpr 1<i<N. Observe that the algebraic systd#3) has N
according to our analysis of Section @,is related tow by the equations withN unknowns and, hence, is overdetermined. The
approximate formul&l5), which gives for theC(1) andK values least squares solutior €,}) of Eq. (A-3) satisfies the following

of Fig. 6: equation:

526 / Vol. 126, OCTOBER 2004 Transactions of the ASME
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which always has a solution when the columnsd&({u,(0)}) tive Dynamical Systems,Proc. of 4th GRACM Congress on Computational
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tial positions of the particles by adding these corrections to the old “Smaller Alignment Index(SALI): Determining the Ordered or Chaotic Na-

L L — ture of Orbits in Conservative Dynamical System,” Proc. Conference Libration
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within a prescribed accuracy. Thus, the initial positions of th phys. A,37, p. 6269.
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