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In this paper, we use the method of homoclinic orbits to study the existence and sta
of discrete breathers, i.e., spatially localized and time-periodic oscillations of a clas
one-dimensional (1D) nonlinear lattices. The localization can be at one or several
and the 1D lattices we investigate here have linear interaction between nearest neig
and a quartic on-site potential V~u!5 1

2Ku26 1
4u4, where the (1) sign corresponds to

‘‘hard spring’’ and (2) to ‘‘soft spring’’ interactions. These localized oscillations—whe
they are stable under small perturbations—are very important for physical system
cause they seriously affect the energy transport properties of the lattice. Discrete br
ers have recently been created and observed in many experiments, as, e.g., in the J
son junction arrays, optical waveguides, and low-dimensional surfaces. After sho
how to construct them, we use Floquet theory to analyze their linear (local) stab
along certain curves in parameter space (a,v), wherea is the coupling constant andv
the frequency of the breather. We then apply the Smaller Alignment Index method (
to investigate more globally their stability properties in phase space. Comparing
results for the6 cases of V~u!, we find that the regions of existence and stability
breathers of the ‘‘hard spring’’ lattice are considerably larger than those of the ‘‘s
spring’’ system. This is mainly due to the fact that the conditions for resonances bet
breathers and linear modes are much less restrictive in the former than the latter
Furthermore, the bifurcation properties are quite different in the two cases: For exam
the phenomenon of complex instability, observed only for the ‘‘soft spring’’ system, d
bilizes breathers without giving rise to new ones, while the system with ‘‘hard sprin
exhibits curves in parameter space along which the number of monodromy matrix e
values on the unit circle is constant and hence breather solutions preserve their sta
character. @DOI: 10.1115/1.1804997#
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1 Introduction
We consider a one-dimensional~1D! lattice described by the

equations of motion:

ün1V8~un!5a~un111un2122un!, 2`,n,1` (1)

whereun(t) is the displacement of the particle atnth lattice site,a
the coupling parameter, andV(u) an on-site potential given by th
form

V~u!5
1
2Ku26

1
2u4 (2)

where K.0 is a fixed parameter. Dots indicate time derivativ
and primes differentiation with respect to the argument. Th
equations describe the dynamics of an infinitely long chain
oscillators, each linearly coupled to its nearest neighbors and
periencing a ‘‘substrate’’ potentialV. The ~1! sign in Eq. ~2!
implies that the particles are tied to the substrate by ‘‘hard spri
forces, while the~2! sign refers to the ‘‘soft spring’’ case.

Since the seminal paper of MacKay and Aubry in 1994@1#, in
which the existence of localized, time periodic solutions~the so-
called discrete breathers! of systems like~1! was rigorously es-
tablished, there has been a wealth of results in the physics
mathematics literature, concerning the properties of these s
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tions ~see, e.g.,@2–5#!. We believe, therefore, that it is timely fo
the engineering community to become more actively involved
the investigation of these interesting solutions, with the ultim
goal of performing experiments to test the theoretical predictio
It is the purpose of this paper to help make some progress in
direction.

There exist several methods to compute numerically ex
breather solutions for system~1! with on site potential~2!. With
the term ‘‘numerically exact’’ breather, we mean a solution tha
time-periodic and spatially localized for a lattice ofN particles
and retains its shape asN is arbitrarily increased. For example
one can use the method of continuation starting from the li
a50, as explained, e.g., in@1# and @4#. On the other hand, it is
also possible to apply relaxation methods based on the fact th
a breather solution exists and is stable, it should attract a regio
phase space around it, assuming that some dissipative proce
present to eliminate any excess energy@6–8#.

In the present paper, we prefer to use the more recently de
oped method of homoclinic orbits of invertible maps, as describ
in @9# and implemented in@10–12#, which turns out to be very
convenient, as it can be applied independently of the value of
coupling parametera. This method operates in Fourier space a
offers excellent approximations for breathers, which can be m
‘‘numerically exact’’ by using the convergence of Newto
schemes to construct them to arbitrary accuracy. Furthermor

ion
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provides a systematic way by which all types of breathers p
sessing an arbitrary number of ‘‘local extrema’’~the so-called
multibreathers! can be constructed.

The paper is organized as follows: In Section 2, we desc
briefly the method of homoclinic orbits of maps in Fourier spa
used to study the existence of breather solutions of our ‘‘ha
spring’’ and soft-spring 1D lattices. We explain the notion of res
nances between breathers and the ‘‘phonon’’ spectrum~the linear
mode frequencies of the lattice! and analyze our maps to sho
that the parameter regions for the existence of breathers in
hard-spring system are much larger than those of the soft-sp
case. Our analytical predictions are fully confirmed by numeri
experiments, which are presented in Section 3. Incidentally, un
the discrete case, phonon resonances are very difficult to avo
continuous systems described by partial differential equations.
an analysis of localized ‘‘waves’’ in such systems, see@13#.

Subsequently, in Section 4, we examine the local and glo
stability properties of some of our discrete breathers. Our lo
analysis is based on Floquet theory and follows the behavio
the eigenvalues of the monodromy matrix of these periodic s
tions, as a function of the coupling parametera and their fre-
quency v. If all these eigenvalues lie on the unit circle, th
breather is said to be locally~linearly! stable, under infinitesima
perturbations, otherwise it is locally unstable.

Thus, by varying the coupling parametera.0, we study the
bifurcations~or stability transitions! of breather solutions and dis
cover some important differences in the dynamics of the ha
spring and soft-spring lattice. For example, the hard-spring bre
ers preserve their stability over much longer parameter inter
and upon bifurcations inherit their stability to new breathe
while the ‘‘soft-spring’’ breathers very often undergo complex i
stability transitions, at which no new periodic solutions arise.
then use the SALI method@14–18# to study solutions more ‘‘glo-
bally’’ in the vicinity of a breather in theN-dimensional phase
space. Thus, we demonstrate the presence of regular m
around stable breathers, while evidence of chaotic behavio
observed at sufficient distance from them in the space of in
conditions.

Finally, in Section 5, we present our conclusions together w
some additional results, which show that the energy versus
quency plots for the two systems exhibit quite different charac
istics. In the soft-spring lattice, the energy per particle attain
maximum at some frequency value and then decreases tow
zero, while for the hard-spring breathers the energy grows mo
tonically with increasing frequency. It would thus be very inte
esting to devise actual experiments by which one could test
validity of these results in realistic systems of nonlinear osci
tors.

2 The Method of Homoclinic Orbits
Since a discrete breather solution of Eq.~1! is time-periodic

with, say, periodT and frequencyv52p/T, it can be expanded in
Fourier series

un~ t !5 (
k52`

`

An~k!exp~ ikvt ! (3)

with coefficients

An~k!5An* ~2k! (4)

Since the oscillations are expected to have zero mean, by virtu
the form of the potential~2!, we setAn(0)50. Furthermore, all
particles oscillate in phase, hence we may search for solut
with initial velocities zero, thus taking all theAn(k) to be real
numbers. Finally, due to the symmetry of the on site potential~2!,
only the modes with odd indexk ~i.e., k51,3,5, . . . ) arenon-
zero. The existence of such periodic solutions for hard-spring
tems @with 1 in Eq. ~2!# has already been extensively demo
strated in the recent literature@9–12#.
Journal of Vibration and Acoustics
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In this paper, we shall concentrate on the soft-spring poten

V~u!5
1
2Ku22

1
2u4 (5)

Inserting Eq.~3! in the equations of motion~1! and equating co-
efficients of exp(ikvt) for everyk, we obtain the following alge-
braic system for theAn(k):

An11~k!1An21~k!5C~k!An~k!

2
1

a (
k1

(
k2

(
k3

An~k1!An~k2!An~k3!

(6)

wherek11k21k35k and

C~k!5S 21
K2k2v2

a D (7)

The recurrence relation~6! is an infinite-dimensional mapping o
the Fourier coefficientsAn(k) with lattice site indexn as iteration
parameter. Spatial localization requires that the Fourier amplitu
in the recurrence relation~6! satisfyAn(k)→0 asini→`. Hence
a discrete~multi-! breather is a homoclinic orbit in the space
Fourier coefficients, i.e., a doubly infinite sequence of points
ginning at 0 forn→2` and ending at 0 forn→`. Of course, in
any numerical method the index space (n,k) has to be restricted to
a finite subspace.

Following the above arguments, if the Fourier series of Eq.~4!
converges, theuAn(k)u diminish rapidly with increasinguku, then
it is sufficient to consider only a small number of harmonics
Fourier series in Eq.~4!, sayM, for all n lattice sites (2`,n,
1`), i.e., k51,2, . . . ,M . Under these conditions, Eq.~6! repre-
sents a 2M -dimensional map and spatially localized time-period
solutions may be expected to exist in the neighborhood of
trivial solution (An(k)50, for all n, k!, provided this solution is
hyperbolic, i.e., represents a saddle point of the map.

Thus, we first need to determine conditions under which
trivial fixed point of the 2M -dimensional map is a saddle an
examine the dimensionality of its stable and unstable manifo
To this end, we observe that a linearization of Eq.~6! near the
point @An(k)50, for all n, k# yields M uncoupled 2D linear maps
with eigenvalues

l1,2~k!5
C~k!6AC~k!224

2
(8)

for every k. Consequently, the fixed point~0,0! of the map is
hyperbolic ~saddle point!, with an M-dimensional stable and a
M-dimensional unstable manifold, if

uC~k!u.2, kP- (9)

The inequality in Eq.~9!, using Eq.~7!, implies that we must
require

v2k2,K or v2k2.K14a (10)

Thus, breathers exist if the fundamental frequencyv, obtained
from Eq. ~7!, with k51

v5AK2a~C~1!22! (11)

and all its harmonics have values outside the range (K,K14a)
specified by Eq.~10!. This range, in fact, represents the spectru
of linear modes of the particles~the so-calledphonons! and is
often called thepropagation zonebecause it is within this range o
frequencies that small disturbances can propagate along the
tice. If vk were to lie in this range for somek, this would imply
the reduction of dimensions of the unstable manifold. Thus,
OCTOBER 2004, Vol. 126 Õ 521
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origin could not be a saddle fixed point of map~6! and homoclinic
points ~and breather solutions! would not exist with equivalent
properties asn→6`.

Let us consider now the simplest possible approximation,
which the Fourier series~3! is represented by a single mode on
i.e.,

un
~0!~ t !52An~1!cosvt, 2`,n,1` (12)

Substituting Eq.~12! into Eq. ~1!, using Eq.~2!, and scaling also
the Fourier coefficients by

An~1!5AaAn (13)

we obtain, finally,

An111An212C~1!An523An
3 (14)

where

C~1!5S 21
K2v2

a D (15)

Thus, instead of studying the 2M -D map ~6!, we solve the 2D
map ~14! to obtain zeroth order approximations~12! of the
breather solutions of the 1D lattice~1! with the quartic on-site
potential~2!. Clearly, the fixed point~0,0! of the 2D map~14! will
be hyperbolic, with a 1D stable and a 1D unstable manifold
C(1).2 or C(1),22. We only treat here the caseC(1).2,
because forC(1),22 the invariant manifolds of the saddle poi
at ~0,0! do not intersect and breathers are not expected to ex

Using ~15!, the inequalityC(1).2 means that the value of th
frequencyv is below the phonon band~propagation zone!, i.e.,
v2,K. Thus, to have breather solutions, one must appropria
restrict the system’s parameters so that the frequencies of all
monics,kv, lie outside the phonon band (K,K14a). By com-
parison, the values of the frequencies~fundamental and harmon
ics! of the hard-spring system are all above the phonon band, o
v2.K14a is satisfied. Consequently, the parameter range
the existence of breathers of the hard-spring lattice is much la
than the corresponding one for the soft-spring potential~2!.

3 Numerical Computation of Breathers
Let us note now that~14! is an iterative map. This implies tha

the future state is obtained as the image of the current state
lies in the same 2D space. Starting from an initial pointx0
5(A0 ,B0) one obtains a unique orbit, denoted by$xn% with n
>0. The inverse of the map~14! is easily derived

An5Bn11 (16)
Bn52An111C~1!Bn1123Bn11

3

and, hence, the iteration indexn can be any integer (nPZ) and
~14! is called an invertible map. An orbit is also referred as
solution of the map, since it solves the system of Eq.~14!. Orbits
considered in this paper are orbits connecting the saddle p
~0,0! of our map to itself and are called homoclinic orbits.
homoclinic orbit consists by definition of statesxn , which lie at
the intersection of unstable manifold and stable manifold of
saddle fixed point. If there is one state for which this holds, th
exist infinitely many of them, thus giving rise to an infinity o
homoclinic orbits. The emerging picture is that ofa homoclinic
tangle@19#.

An example of such a structure is shown in Fig. 1, where
plot in the An11 , An plane the stable and unstable manifolds
the saddle point at~0,0! of 2D map~14! with C(1)53. Beginning
from states close to the origin, which lie on the unstable eig
vector of the Jacobian map of Eq.~14!, and applying the map
repeatedly, we follow the unstable manifold in the forward dire
tion (n→`). We then begin from states close to origin, which
on the unstable eigenvector of the Jacobian of the inverse
~16!, and apply the inverse map to follow the stable manifold
522 Õ Vol. 126, OCTOBER 2004
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the backward direction (n→2`). The plot of our numerical re-
sults shows that the manifolds extend to large distances from
gin, but also return to form homoclinic points, at the intersectio
of the stable and unstable manifolds~see Fig. 1!. The normalized
unstable eigenvector of the Jacobian of map Eq.~14! is given by

vW 5S v1

v2
D5

1

Ar211
S r
1D , r5

C~1!1AC~1!224

2
(17)

and spans the linear unstable eigenspace of the origin. The
malized stable eigenvector of the Jacobian of Eqs.~16! is given by

sW5S s1

s2
D5

1

Ar211
S 1
r D (18)

and spans the linear stable eigenspace of the origin. It is w
known ~see, e.g.,@13#! that the stable and unstable manifolds of
hyperbolic fixed point are tangent to the spaces spanned by
stable and unstable eigenvectors of the Jacobian matrix at
fixed point, respectively. It also holds that the Jacobian of
inverse map is the inverse of the Jacobian matrix of the map.

To compute the homoclinic solutions of Eqs.~14! and~16!, we
apply the following numerical method that uses approximations
the boundaries. We chooseN(2N,n,N) for 2N11 particles
on the chain and then compute the zeros of an algebraic sys
More specifically, due to the topological equivalence of the orb
of the linear system and the complete system we set thex2N
5(A2N11 ,A2N) state on the linear unstable eigenspace of
origin, i.e., A2N115«gv1 , A2N5«gv2 , where « ~u«u,1! is a
scalar parameter,g is an unknown real number andv1,2 are the
components of the normalized unstable eigenvector@see Eq.~17!#.

Using the same arguments, we set thexN5(AN ,AN21) state on
the linear stable eigenspace of the origin, i.e.,AN5«bs1 , AN21
5«bs2 , whereb is a unknown real number ands1,2 are the com-
ponents of the normalized stable eigenvector,@see Eq.~18!#. Be-

Fig. 1 Part of the homoclinic tangle around the origin of the
map of Eq. „16… at C„1…Ä3. The stable and unstable manifolds
are the curves emerging out of the „0,0… saddle point and are
indicated by the incoming and outgoing arrows, respectively.
Some points of two homoclinic orbits at their intersections
„corresponding to two different breather solutions … are shown
by dark and gray dots, respectively. They provide very accurate
estimates for the oscillation amplitudes A n of the particles of
the lattice, n«Z.
Transactions of the ASME



g

a

o

v

i
o
r

i

y

r

b

n

b

u

e
t
e

t

r
bil-
al-
the

ther

he

the
o-

ri-
ft-
ng

ta-
by

pace
ginning then from statex2N and applying forward (F)N21 times
the recurrence relation~14! we obtain anA0

F(g) which depends on
g. Repeating the procedure in the backward direction~B!, we start
from a statexN . After N21 times we compute theA0

B(b), which
depends onb. Since we seek homoclinic orbits, the followin
relations must be satisfied at the middle of the lattice:

A0
F~g!5A0

B~b! (19)

and

A1
B~b!5C~1!A0

F~g!23„A0
F~g!…32A21

F ~g! (20)

Thus, the search for homoclinic solutions is reduced to findin
statex2N of the unstable manifold of the origin and a statexN of
the stable manifold of the origin, determined by the numbersg, b,
for which Eqs. ~19! and ~20! are satisfied. There exist sever
methods for finding zeros of a system of equations like~21!, ~22!
~e.g., Newton methods, steepest descent methods, etc.!, but they
are not always the most appropriate to employ due to their n
rious difficulties in distinguishing between nearby zeros.

Here, we shall use the method of the topological degree@20–
22#, which gives the exact number of zeros in a restricted inter
It has already been successfully employed for a similar purpos
@10–12#, and is ideal for finding zeros when combined with
bisection method~i.e., iteratively dividing the search space
smaller sections containing zeros until each section contains
a single zero and the size of the section is below an accu
threshold!. Finally, to compute the initial positionsun(0) of the
particles for a~multi-!breather solution, we use our homoclin
orbit as a first estimate of the initial positions theAn(1)’s @see Eq.
~13!#, and insert this set of values as a seed in a Newton-t
algorithm ~see the Appendix! to find numerically exact breathe
solutions, like the one shown here in Fig. 2~a!.

We have also verified, by computing the Fourier amplitudes
the actual breather solutions, that the contribution of higher-or
terms grows as the coupling parametera energy of a breathe
solution is increased. In particular, in Fig. 2~b! we show how the
magnitude ofA0(3) increases compared with that ofA0(1). Still,
this figure suggests that the higher harmonics,An(k), k.1, are
much smaller thanAn(1) and this justifies our use of the 2D ma
~14! and explains the accuracy of the approximation~12!.

4 Local and Global Stability of Discrete Breathers
For a given solution$un(t)% of Eqs. ~1! and ~2! of the soft-

spring system, the linearized equations of motion fulfilled
small perturbations$en(t)% of this solution, are

ën1Ken23un
2~ t !en2a~en111en2122en!50 (21)

A solution $un(t)% is considered stable when, for any initial co
ditions, the linear perturbations$en(t)% do not grow exponentially
in time. When$un(t)% is time-periodic with periodT, then Eq.
~21! defines a linear symplectic map between the initial pertur
tion at t50 and the perturbation at timet5T, expressed by a
matrix F($un%), known as the monodromy matrix:

F $en~T!%
$ėn~T!%G5F~$un%!F $en~0!%

$ėn~0!%G (22)

The time-periodic solution$un(t)% is called linearly stable when
all the eigenvalues of this monodromy matrixF($un%) lie on the
unit circle. The monodromy matrixF($un%) always has a pair of
degenerate eigenvalues equal to one, corresponding to pert
tions in the direction of motion which grow linearly int. When
some eigenvalue pairs ‘‘split off’’ the unit circle, then the corr
sponding perturbations grow exponentially in time and
breather is called linearly unstable.~For a discussion of all thes
concepts concerning the linear stability of discrete breathers
@5#!.

Using the method of homoclinic orbits described in the abo
sections, we have constructed a large number of breather solu
Journal of Vibration and Acoustics
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of Eq. ~1! with the potential~5! and studied their linear stability
characteristics. We thus obtained the following results:

• In most cases, as the coupling parametera increases, breathe
solutions for soft-spring systems undergo a complex insta
ity transition, i.e., a complex conjugate pair of their eigenv
ues achieves magnitudes larger than one by splitting off
unit circle in two complex conjugate pairs@see Fig. 3~c!#. It is
important to note that, unlike other bifurcation types~like
pitchfork, period-doubling, etc.!, this instability transition is
not associated with the simultaneous appearance of o
~stable! periodic solutions@23,24#.

• Unlike the hard-spring case, when we follow curves in t
parametric space (a,K,v), described by the function
breather solutions for soft-spring systems do not preserve
number of eigenvalues of the monodromy matrix with abs
lute values different from one. In Fig. 3 we depict the dist
bution of eigenvalues of the monodromy matrix for a so
spring breather solution for various values of coupli
parametera, keeping constant the values forC(1) and forK
@see Eq.~15!#.

G~a,K,v!52S 21
K2v2

a D5const. (23)

By comparison, the breather solutions of systems~1! with quar-
tic hard-spring potential do not appear to exhibit complex ins
bility transitions, as they are always found to become unstable
pairs of eigenvalues splitting off the unit circle at11 on the real
axis. Furthermore, they do possess curves in parameter s
(a,K,v), described approximately by Eq.~23!, along which

Fig. 2 „a… Initial conditions of a simple ‘‘soft spring’’ breather
for KÄ2, C„1…Ä8 for 21 particles „NÄ10…. „b… Variation of the
ratio of coefficients A 0„3…ÕA 0„1… in the Fourier expansion of
u 0„t … „position of central particle … versus the coupling param-
eter a, for the breather in „a….
OCTOBER 2004, Vol. 126 Õ 523
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Fig. 3 For the ‘‘soft spring’’ breather shown in „a…, with 21 particles and C„1…Ä8, KÄ2, we display in the complex plane how
the distribution of the eigenvalues of the monodromy matrix changes as the coupling parameter a is increased: „b… aÄ0.015,
„c… aÄ0.05, and „d… aÄ0.1. Note the occurrence of complex instability at aÐ0.05.
u

a

o

a

t

c
ther

, in

q.
e
-

breather solutions do not change their stability preserving
number of eigenvalues of monodromy matrix with absolute val
different from one@12,13#.

A more ‘‘global’’ investigation of the stability of discrete
breathers can be performed using the method of the Sm
Alignment Index ~SALI! to discriminate between ordered an
chaotic motion in a very efficient way. This method was intr
duced in@14#, where it was applied successfully in 2D, 4D, an
6D symplectic maps. More importantly, however, it distinguish
order from chaos also in Hamiltonian systems, as shown in@15–
18#, where it was applied to systems with two and three degree
freedom.

The main advantage of the SALI is that it has completely d
ferent behavior for ordered and chaotic orbits, which allows us
decide the nature of the orbit faster than other traditional meth
such as, e.g., the computation of Lyapunov characteristic ex
nents@25#. In particular, the SALI fluctuates around nonzero v
ues for ordered motion, while it goes abruptly to zero for chao
orbits. In the latter case, the SALI can also reach the limit of
24 Õ Vol. 126, OCTOBER 2004
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accuracy of the computer (10216), which means that the chaoti
nature of the orbit is established beyond any doubt and no fur
computations are needed.

This method can be briefly described as follows: Consider
an m-dimensional Euclidian space, a nonlinear mapT, and the
initial condition of an orbit defined by a pointP(0). Theevolu-
tion of this orbit is given by iteratingT

P~N* 11!5T~P~N* !!, N* 50,1,2, . . . (24)

In our case, Eq.~24! represents the numerical integration of E
~1!, N* counts the time steps andm is the dimension of the phas
space variables (un ,u̇n) of the lattice. Solving the linearized equa
tions of motion of Eq.~1! about the orbitP(N* ) yields the linear
~tangent! map

w~N* 11!5S ]T

]P~N* ! Dw~N* ! (25)
Transactions of the ASME
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describing the evolution of an initial deviation vectorw(0) from
the orbit. In order to compute the SALI we follow simultaneous
the evolution ofP(N* ) and two initially different deviation vec-
tors w1(0), w2(0). In every iteration the deviation vectors a
normalized, keeping their norm equal to 1, while the norm of th
sum ~antiparallel alignment index, ALI1) and their difference
~parallel alignment index, ALI2) are also computed. Then th
SALI is defined as the minimum of the following two quantitie

SALI~N* !5minH I w1~N* !

iw1~N* !i
1

w2~N* !

iw2~N* !i I ,I w1~N* !

iw1~N* !i

2
w2~N* !

iw2~N* !i I J (26)

with i•i denoting the euclidean norm.
In the case of chaotic orbits the two deviation vectors will eve

tually be aligned with the most unstable direction@14#, becoming
equal (ALI250) or opposite (ALI150), which means that the
SALI becomes zero. The way the two vectors align and, con
quently, the way the SALI tends to zero for chaotic orbits w
studied in detail in@18#. In particular it was found that the rate a
which the SALI tends to zero in the case of chaotic orbits
related to the difference of the two largest Lyapunov character
exponentss1 , s2 as SALI;exp@2(s12s2)t# ~with t denoting the
time!.

In the case of ordered orbits on the other hand, the motio
quasiperiodic and takes place on a torus, as if the system w
integrable. Thus, any pair of arbitrary deviation vectors tends
the tangent space of the torus and because there is no reaso
they should become aligned, in general, they oscillate about
different directions and the SALI fluctuates around some non-z
value. In @17# the behavior of the SALI for ordered orbits wa
studied and explained, in detail, in the case of a completely i
grable 2D Hamiltonian system.

In the present paper we have applied the SALI method to
out how persistent is the ordered behavior around stable brea
in the hard- and soft-spring potentials. Of course, since the
merically exact breathers correspond to periodic orbits in a m
tidimensional phase space, they can be perturbed by chang
number of different variables. In order to get a rough idea of
‘‘size’’ of the phase space region of ordered behavior around
stable breather, we have chosen to perturb only the initial posi
of the central particleu0 .

Thus, starting from the stable periodic orbit and changingu0 we
compute for a sample of orbits the SALI using as initial deviati
vectorsw1(0)5(1,0, . . . 0),w2(0)5(0,1,0, . . . ,0). The SALI of
ordered orbits remains always different from zero exhibiting so
small fluctuations. This behavior is shown in the log-log plots
Fig. 4 for the soft-spring potential and Fig. 5 for the hard-spr
case, where the SALI of a stable periodic orbit is plotted as fu
tion of the number of iterationsN* @curves~a! in both figures#.

In the soft-spring case, the first chaotic orbit was found fo
perturbationDu050.2207 and the evolution of the correspondi
SALI is plotted in Fig. 4 as curve~b!. We see that after an initia
transient time interval the SALI decreases abruptly reaching v
small values, 10210 afterN* '1500 iterations, which is the typica
behavior of the SALI for chaotic motion.

On the other hand, in the hard-spring case it is much harde
destabilize the stable periodic orbit, as we need a consider
higher perturbationDu0 to have chaotic motion. In particular w
have to perturb the position of the central particle byDu051.3 to
get a chaotic orbit, the SALI of which is plotted in Fig. 5 as cur
~b!. Again we have an abrupt fall of the SALI to very small valu
reaching 10210 after N* '9500 iterations.

5 Conclusions
In this paper, we have studied the existence and stability

physically interesting class of solutions, occurring in nonline
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lattices. These are the so-called discrete breathers, represe
localized periodic oscillations, where only a small number of p
ticles at the center of the lattice participate appreciably in
motion, while the amplitudes of all others exponentially dec
with respect to their distance from the center. Discrete breath
have recently been created and observed in many experiment
e.g., in the Josephson junction arrays@26,27#, optical waveguides
@28#, and low-dimensional surfaces@29#. We have considered
1-dimensional lattices, whose particles are linearly coupled
their nearest neighbors, but also ‘‘tied’’ to a nonlinear substr
potential of the soft-spring type. Since similar studies have b
extensively carried out for hard-spring potentials, our aim h
was to compare breather dynamics in these cases and identify
physically important differences that may exist.

Our main results can be summarized as follows: Varying
lattice coupling parametera.0, we have studied bifurcations o
several different breather solutions and have found that the h
spring breathers preserve their stability over much longer par
eter intervals and upon bifurcations inherit their stability to ne
breathers. The soft-spring breathers on the other hand, very o
undergo complex instability transitions, at which no new perio

Fig. 4 The log-log evolution of SALI with respect to the num-
ber N* of iterations for the stable breather solution of Fig. 2 „a…
with soft-spring potential containing 21 particles at C„1…Ä8,
aÄ0.15275, KÄ2 †curve „a…‡ and for the same orbit with a per-
turbation Du 0Ä0.2207 in the initial position of the central par-
ticle †curve „b…‡.

Fig. 5 The log-log evolution of the SALI with respect to the
number N* of iterations for a stable breather, like the one in
Fig. 2 „a…, with hard-spring potential containing 21 particles at
C„1…Ä8, aÄ0.15275, KÄ2 †curve „a…‡ and for the orbit with a
perturbation Du 0Ä1.3 in the initial position of the central par-
ticle †curve „b…‡.
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solutions arise. We have also used the SALI method to exam
the presence of ordered or chaotic motion more ‘‘globally’’ in t
vicinity of a breather in its multidimensional phase space. Th
we have observed that regions of regular motion around-st
breathers are considerably larger and evidence of chaotic beh
is observed significantly further from them in the hard-spring l
tice, in comparison with similar results for the soft-spring syste

In closing, we would like to point out one more important d
ference between these two kinds of lattices, regarding the va
tion of the energy per particle of a breather with the frequency
oscillation v. In Fig. 6~a!, we depict this behavior for the soft
spring breather of Fig. 2~a! and in Fig. 6~b! for a similar breather
with a hard-spring potential. In the case of the soft-spring syst
the energy per particle exhibits a clear maximum at a freque
below the propagation zone@Fig. 6~a!#, while the energy of the
hard spring is seen to grow monotonically with increasingv @Fig.
6~b!#.

This effect is due to the different form of the energy as a fu
tion of the coupling constanta in the two cases. Using our simpl
~but very accurate! approximation~12! with ~13!, we can express
this dependence in the following form@see the potential~2!#:

E5
1

N FaS 2K(
n51

N

An
2D 1a2S 2(

n51

N21

~An112An!264(
n51

N

An
4D G

(27)

The factor ofa2 in the above function is positive for the hard
spring lattice, while it is negative for the soft-spring system. No
according to our analysis of Section 2,a is related tov by the
approximate formula~15!, which gives for theC(1) andK values
of Fig. 6:

Fig. 6 „a… Variation of energy per particle versus frequency v,
for the simple breather with ‘‘soft-spring’’ potential shown in
Fig. 2 „a…. „b… Variation of energy per particle versus frequency
v, for a simple breather similar to that of Fig. 2 „a…, with ‘‘hard-
spring’’ potential, at KÄ2, C„1…ÄÀ8 and 21 particles.
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• a5(22v2)/6 andv2,2 for the soft-spring lattice
• a5(v222)/10 andv2.2 for the hard-spring lattice.

Inserting these expressions fora in ~27!, it is now easy to explain
the main features of the graphs in Fig. 6. For example, in Fig. 6~a!
the energy starts from a non-zero value and approaches zerov
tends to&, while in Fig. 6~b! v starts from& where the energy
is zero.

Furthermore, using the above formulas to express the enerE
in Eq. ~27! as a function ofv2 it is easy to show that this function
has a maximum in the case of the soft-spring lattice, while
grows monotonically for the hard-spring system.

In conclusion, therefore, we believe that our study has revea
some important differences in the dynamics of 1D lattices of n
linear oscillators with linear coupling among nearest neighb
and soft-spring versus hard-spring on-site potentials. These p
erties concern the properties of localized periodic oscillations
discrete breathers, which are currently under study in many ph
cal systems. The fact that these structures are often found t
stable under small perturbations suggests that they may indee
observable in experimental situations. It would thus be hig
desirable to construct such oscillator systems in the laborator
one and two spatial dimensions and test the validity of the th
retical analysis and the simulations carried out in this paper.
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Appendix: A Newton Algorithm for the Calculation of
Breather Solutions of Eq. „1…

In order to compute localized oscillations of periodT of the
dynamical system described by Eq.~1!, with initial conditions
$un(0)%Þ$0%, $u̇n(0)%5$0%, we define the following vector
equation:

S $un~T!%
$u̇n~T!% D2S $un~0!%

$0% D5PW ~$un~0!%! (A1)

where the$un(t)% represent the positions of theN particles of the
system and$u̇n(t)% their velocities at timet. PW is a 2N31 vector
function of the initial positions$un(0)%.

Since we search for time-periodic solution with zero initial v
locities, we need to calculate theN corrections$en% of the initial
positions, in such a way that

PW ~$un~0!%1$en%!50 (A2)

Expanding~A2! around the known quantities$un(0)%, we obtain
the following equation:

PW ~$un~0!%!1]PW ~$un~0!%!~$en%!50 (A3)

where]PW ($un(0)%) is a 2N3N matrix with elements

]PW ~$un~0!%! i ,i5
]ui~T!

]ui~0!
21, ]PW ~$un~0!%! i , j5

]ui~T!

]uj~0!
(A4)

for 1< i<N. Observe that the algebraic system~A-3! has 2N
equations withN unknowns and, hence, is overdetermined. T
least squares solution ($ēn%) of Eq. ~A-3! satisfies the following
equation:
Transactions of the ASME
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]PW T~$un~0!%!•]PW ~$un~0!%!•~$ēn%!

52]PW T~$un~0!%!•PW ~$un~0!%! (A5)

where]PW T($un(0)%) is the transpose matrix of]PW ($un(0)%)
Thus, the system~A5! containsN equations withN unknowns,

which always has a solution when the columns of]PW ($un(0)%)
are linearly independent. Solving Eqs.~A5! by a standard numeri
cal scheme, we find the corrections ($ēn%) and calculate new ini-
tial positions of the particles by adding these corrections to the
initial positions ($un(0)%)new5($un(0)%)1($ēn%). These are now
initial guesses for the next step of this Newton algorithm. T
procedure is repeated until the calculated initial positions sat
the relation

PW ~$un~0!%new!50 (A6)

within a prescribed accuracy. Thus, the initial positions of
particles for the desired breather solution have been determin
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